
Clustering Variable Length Sequences by

Eigenvector Decomposition using HMM

Fatih Porikli

Mitsubishi Electric Research Laboratories, Cambridge MA 02139, USA,
fatih@merl.com

Abstract. We present a novel clustering method using HMM parameter
space and eigenvector decomposition. Unlike the existing methods, our
algorithm can cluster both constant and variable length sequences with-
out requiring normalization of data. We show that the number of clusters
governs the number of eigenvectors used to span the feature similarity
space. We are thus able to automatically compute the optimal number
of clusters. We successfully show that the proposed method accurately
clusters variable length sequences for various scenarios.

1 Motivation

Although many algorithms exist for unsupervised classification of patterns into
clusters, most of these methods require the data space X consists of ‘identical
length’ data points (feature vectors) xi = (xi1, ..., xiN) where N is the dimen-
sion of the data space, i.e. X : RN . Such algorithms include the ordinary im-
plementations of decision trees, neural nets, Bayesian classifiers, ML-estimators,
support vector machines, Gaussian mixture models, k-means, and hierarchical
approaches, self-organizing maps, etc [4].

However not all classification problems can be formulated into a data space
that contains only equal length feature vectors. For instance, lets consider the
following scenarios:

Example 1. A data space contains different shapes. We compute a sequence of
boundary coordinates for each shape by starting from a certain point on the
boundary. Then we obtain sequences such as si = ((xi1, yi1), ..., (xiNi , yiNi))
where (xij , yij) is the coordinate of the jth boundary point for the ith shape. In
this case, the length of the sequences are not necessarily same since the length
of the boundaries may be different, e.g. it is possible that N1 6= N2.

Example 2. A basket contains unknown number of not necessarily identical balls
labeled as a and b. At a random time instant we start drawing balls from this
basket. We keep record of the symbols on the balls. Then we stop drawing balls
at a random time instant. By repeating the experiment we obtain sequences as

s1 = abababababababababababababababababa
s2 = abababababababababa
s3 = bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb, etc.

Note that the length of these sequences are different. This process is analogous
to chopping a DNA into genes. Finding the common and divergent patterns
from a big pool of protein genomes, which come in various sizes, is a challenge
of current bioinformatics and requires clustering of variable length sequences.

We will refer the type of the data in these examples as variable length se-
quences. One way to adapt some of the above scenarios for ordinary classification,
which processes constant length sequences, is to normalize the length of the fea-
ture vectors. Although commonly used due to its simplicity, normalization of the
feature vector length (either by sampling or interpolation) causes severe degra-
dation and aliasing. Besides, some clustering approaches assume that they can
compute a centroid and then compare the data points with this centroid, as in
k-means. It is not possible to obtain such a centroid for variable length data.

Thus, we propose a clustering algorithm that can classify variable length
sequences. Our algorithm also estimates the optimum number of clusters and
does not require normalization of the length of the feature vectors. Instead of
working directly on the initial values, we transfer the sequences into a parameter
space using Hidden Markov Models (HMM), which captures the probabilistic
transition properties of sequential data.

In this work, we concentrate on the discrete label sequences. Using the pa-
rameter space representations, we compute an affinity matrix that shows the
similarity of a given pair of sequences. Then we decompose the affinity ma-
trix into a series of subspaces spanned by the eigenvectors corresponding to the
largest eigenvalues. We threshold the decomposed values and partition clusters
using simple connected component analysis. For each decomposition, we calcu-
late a validity score indicating the fitness of the current clusters to the data. We
determine the optimum number of clusters using the validity score. We give a
flow diagram of the method in fig. 1.

Fig. 1. Flow diagram of clustering sequences.

In the next section, we explain HMM’s and affinity matrix. In section 3, we
present eigenvector decomposition. In the following sections, we give details of
the clustering and discuss simulations.

2 Parameter Space by HMM

We project each sequence si into the parameter space that is characterized by
a set of HMM parameters. HMM’s are richer representations of time series. An
HMM is a probabilistic model composed of a number of interconnected states,
each of which emits an observable output. A discrete hidden Markov model is
defined by a set of states and an alphabet of output symbols [6]. Each state is
characterized by two probability distributions: the transition distribution over
states and the emission distribution over the output symbols. A random source
described by such a model generates a sequence of output symbols as follows: at
each time step the source is in one state, and after emitting an output symbol
according to the emission distribution of the current state, the source jumps to
a next state according to the transition distribution of its current state. Since
the activity of the source is observed indirectly, through the sequence of output
symbols, and the sequence of states is not directly observable, the states are said
to be hidden.

An K-state {S1, S2, ..., SK}, discrete HMM is represented by:

1. A set of prior probabilities π = {πi} where πi = P (q1 = Si),1 ≤ i ≤ K.
2. A set of state transition probabilities H = {hij}, where hij = P (qt+1 =

Sj |qt = Si),1 ≤ i, j ≤ K.
3. A set of output distributions B = {bij}, where bij(y) = P (Ot+1 = y|qt =

Si, qt+1 = j),1 ≤ i, j ≤ K.

where qt and Ot are the state and observation respectively at time t. It is com-
mon to denote the an M -mixture of HMM’s by (Hm, Bm, πm), 1 ≤ m ≤M . For
discrete HMM, algorithms exist for: 1) computing the probability of observing a
sequence, given a model, 2) finding the state sequence that maximizes the prob-
ability of the given sequence, when the model is known (the Viterbi algorithm),
3) inducing the HMM that maximizes (locally) the probability of the given se-
quence (the BaumWelch algorithm, an expectationmaximization algorithm).

For each sequence, we fit a HMM (a discrete model in case the sequence com-
ponents are labels, a continuous model in case the components are real numbers
that reflect certain proportional properties, e.g. magnitude, coordinate, etc). The
number of states K, number of models M , and the HMM topology (left-to-right)
are assigned same for each sequence. This enables us to compute parameter space
distances using the model state transition, observation, and prior matrix differ-
ences [8].

Definition 1. A feature fi is a set of real numbers that correspond the HMM
parameters of a sequence si for a given number of states K, number of mixtures
M , and left-to-right topology using the sequence as an observation (fi : si →
(Hm, Bm, πm)i).

The problem of estimating the correct number of clusters is a difficult one:
a full Bayesian solution for obtaining the posterior probability on M , requires a
complex integration over the HMM parameter space, as well as knowledge about

the priors on the mixture parameters and about the priors on M itself. Often
this integration cannot be solved in closed form, and Monte-Carlo methods and
other approximation methods are used to evaluate it. However, these methods
are computationally intensive [1].

Now, we can compute our affinity matrix. Given two sequences si, sj , we
determine the probability that feature set is generated by sj and feature set fj

is generated by si. This probability indicates the mutual ‘fitness’ of the given
sequences to corresponding HMM’s. Thus, the affinity matrix represents the
similarity of two sequences. The elements aij of A are equal to

aij = e−d(si,sj)/2σ2
(1)

where the distance is defined as

d(si, sj) = |P (si|fi) + P (sj |fj)− P (si|fj)− P (sj |fi)| . (2)

and σ2 is a scaler. The affinity matrix components will have values close to 1 if the
corresponding sequences fit well to each other’s models, and close to 0 otherwise.
Note that similarity matrix A ∈ Rn×n is a real semi-positive symmetric matrix,
thus AT = A.

Next, we explain the details of the eigenvector decomposition process.

3 Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and eigenvectors is known
as eigenvector decomposition. For the affinity matrix A there are n eigenvalues λ
with associated eigenvectors v which satisfy Av = λv. To find these eigenvalues,
we rewrite the previous equation as (A−λI)v = 0 and determinant is computed
det(A− λI) = 0.

Let V ≡ [v1 v2 .. vn] be a matrix formed by the columns of the eigenvectors.
Let D be a diagonal matrix diag[λ1, λ2, .., λn]. Lets also assume λ1 ≥ λ2 ≥ ..λn.
Then the eigenvalue problem becomes

AV = [Av1 .. Avn] = [λ1v1 .. λnvn] = V D (3)

and A = V DV −1. Since A is symmetric, the eigenvectors corresponding to
distinct eigenvalues are real and orthogonal V V T = V T V = I, which implies
A = V DV T .

Iterative Eigenvector Computation The main idea behind iterative compu-
tation is the following. Suppose we have some subspace K of dimension k, over
which the projected matrix A has Ritz [7] value θk and a corresponding Ritz
vector uk. Let us assume that an orthogonal basis for K is given by the vectors
v1,v2, ...,vk (already determined eigenvectors).

Quite naturally the question arises how to expand the subspace in order to
find a successful update for uk, which will become vk+1. To that end we compute

the defect r = Auk − θkuk. Then as in [3], we compute z̃ from (D − θkI)z̃ = r,
where D is the diagonal matrix of A as defined above. The vector z̃ is made
orthogonal to K, and the resulting vector is chosen as the new vk+1 by which
K is expanded. This method find the largest eigenvalues in absolute value. The
matrix (D−θkI)−1 can be viewed as a preconditioner for the vector r. Although
it is tempting to use this preconditioner as an approximation for (A − θkI),
it would not lead to an expansion of our search space. To avoid this stagna-
tion, we concentrate on the kth approximation uk of the eigenvector v, where
uk is normalized ||uk|| = 1. The residual r = Auk − θkuk is orthogonal to uk

because θk = uT
k Auk is the Ritz value associated with uk. We project the eigen-

value problem Av = λv on span(uk), and on its orthogonal complement. This
leads to two coupled equations for λ and the complement z of v orthogonal to
uk: λ = uT

k A(uk + z) and z ⊥ uk, (I − ukuT
k)(A − λI)(I − ukuT

k)z = −r.
Since λ is unknown, we cannot compute optimal update z from uk. However
it is reasonable to replace λ by the current approximation θk. Thus we obtain
r ⊥ uk, (I − ukuT

k)(A − θkI)(I − ukuT
k)z = −r as a good correction for uk.

Similarly, we compute the approximate solution z̃ using this equation, and by
making z̃ orthogonal to search space, we obtain vk+1. Briefly, we extract an
approximate eigenvalue from the search subspace, project it, solve the projected
eigenvalue problem, compute the corresponding Ritz value and residual, cor-
rect the approximate eigenvector u, and expand the search subspace with the
correction vector.

The above iterative prediction is used at the following clustering stage.

4 Clustering

Although eigenvector based clustering [2], [9], [5] is addressed before in the lit-
erature, to our knowledge no one has established the relationship between the
optimal clustering of the data distribution and the number of eigenvectors that
should be used for spanning before. Here we show that the number of eigenvec-
tors is proportional to the number of clusters.

Let a matrix Pk be a matrix in a subspace K that is spanned by the columns
of V such as Pk = [v1 v2 .. vk, 0] where V is the orthogonal basis satisfies
A = V DV T .

Now, we define vectors pn as the rows of the truncated matrix Pk as

Pk =

p1

...
pn

 =

v11 · · · v1k 0 · · ·
v21 · · · v2k 0 · · ·
...

...
vn1 · · · vnk 0 · · ·

 (4)

We normalize each row of matrix Pk by pij ← pij/
√∑k

j p2
ij . Then a correlation

matrix is computed using the normalized rows by Ck = PkPT
k . For a given Pk,

the value of pij indicates the degree of similarity between the object i and object

j. Values close to one correspond to a match whereas negative values and values
close to zero suggest that objects are different. Let ε be a threshold that transfers
values of matrix Ck to the binary quantized values of an association matrix Wk

as

wij =
{

1 cij ≥ ε
0 cij < ε

(5)

where ε ≈ 0.5. The clustering is then becomes grouping the objects that have
association values equal to one wij = 1.

To explain why this works, remember that eigenvectors are the solution of the
classical extremal problem maxvT Av constrained by vT v = 1. That is, find the
linear combination of variables having the largest variance, with the restriction
that the sum of the squared weights is 1. Minimizing the usual Lagrangian
expression vT Av−λ(vT v−1) implies that Av = λv. Thus, v is the eigenvector
with the largest eigenvalue.

When we project the affinity matrix columns on the eigenvector v1 with
the largest eigenvalue and span K1, the distribution of the aij will have the
maximum variance therefore the maximum separation. Keep in mind that a
threshold operation will perform best if the separation is high. To this end, if
the distribution of values have only two distinct classes then a balanced threshold
passing through the center will divide the points into two separate clusters. With
the same reasoning, the eigenvector v2 with the second largest eigenvalue, we
will obtain the basis vector that gives the best separation after normalizing the
projected space using the v1 since v1 ⊥ v2. It is important to note that, each
additional eigenvector enables us to divide the space into an extra cluster. Thus,
we conclude that;

Lemma 1. The number of largest eigenvalues (in absolute value) to span the
subspace is one less than the number of clusters.

As opposed to using only the largest or first and second largest eigenvectors
(also the generalized second minimum which is the ratio of the first and the
second depending the definition of affinity), the correct number of eigenvectors
should be selected with respect to the optimum cluster number.

After each eigenvalue computation of matrix A in the iterative algorithm, we
compute a validity score αk using the clustering results as

validity : αk =
k∑
c

1
Nc

∑
i,j∈Zc

pij (6)

where Zc is set of objects included in the cluster c, Nc number of objects in Zc.
The validity score gets higher values for the better fits. Thus, by evaluating the
local maxima of this score we determine the correct cluster number automati-
cally. Thus, we answer one important question of clustering; ”what should be
the total cluster number?”

The values of the thresholds should still be computed. We obtained projec-
tions that gives us the maximum separation but we did not determine the degree

of separation i.e. maximum and minimum values of projected values on the basis
vectors. For convenience, we normalize the projections i.e. the rows of current
projection matrix (Vk) as pTp = 1 and then compute the correlation V T

k Vk.
Correlation will make rows that their projections are similar to get values close
to 1 (equal values will give exactly 1), and dissimilar values to 0. By maximizing
the separation (distance) between the points in different clusters on an orthonor-
mal basis, we pushed for the orthogonality of points depending their clusters;
pipj ≈ 1 if they are in the same cluster, and pipj ≈ 0 if they are not in the
same cluster.

As a summary, the clustering for a given maximum cluster number k∗ includes

1. Compute A, approximate eigenvectors using Ritz values λk ' θk, find eigen-
vectors vk for k = 1, .., k∗,

2. Find Pk = VkV T
k and Qk for k = 1, .., k∗,

3. Determine clusters and calculate αk,
4. Compute α′ = dα/dk and find local maxima.

The maximum cluster number k∗ does not affect the determination of the fittest
cluster; it only limits the maximum number of possible clusters that will be
searched.

5 Experiments and Discussion

We simulated the proposed method using several label sequences as given in fig.
2. We conducted the following evaluations:

Language Discrimination: We generated three sequences of random inte-
gers that are uniformly distributed in the range [1 : 10]. Then, we replaced each
number in the sequence with its English and Portuguese spellings to obtain the
letter sequences given in fig. 2-a (shown in black). Thus, each letter represents a
label. We trained 4-states HMM’s and applied eigenvector decomposition after
computing the affinity matrix. The validity reached maximum for cluster num-
ber k = 2 and fig. 2-a shows the clustering results. As visible in the bottom part
of fig. 2-a (blue and red clusters), the HMM’s captured the dynamics of letter
ordering that is intrinsic to each language and identified the language clusters
accurately. We obtained similar results for different length sequences as well.
In the future, we plan o represent each word using a separate label rather that
using letters as labels for language related classification tasks.

Pattern Matching: We generated a total of 8 random length sequences
that can be partitioned into 4 patterns using two labels (a, b) as given in fig. 2-b,
left. After computing 2-state HMM’s we obtained the affinity matrix given in
fig. 2-c. The validity scores after iterative clustering is shown in fig. 2-d, where it
reaches maximum for the cluster number k = 4. The corresponding clusters after
eigenvector decomposition is given in fig. 2-d. The results prove that the proposed
method can accurately detect pattern similarities even though the length of the
sequences may differ significantly.

Random Letters: We generated random length, random distributed se-
quences using labels (c, d, e, f, g, h, i, j) as given in fig. 2-e (1st and 3nd columns).
In the first column set, the first 10 sequences consist of uniformly distributed
random drawings of from set (c, d, e, f), and similarly the second 10 sequences
are made of (e, f, g, h), and the last 10 sequences are generated from (g, h, i, j)
to allow partial overlap between each domain. The affinity matrix and validity
scores are given in fig. 2-f and fig. 2-g, respectively. The maximum validity hap-
pens at k = 3. The second column shows the clustering results for this set. The
third row in fig. 2-e shows the random label sequences that are generated using
the set (e, f, g) (first 15 sequences) and a bigger inclusive set of (e, f, g, h, i) (last
15 sequences). The affinity is depicted in fig. 2-h and the validity scores in fig. 2-i.
As obvious in the clustering results, the optimum cluster number is estimated
accurately and the eigenvector decomposition partitioned correctly at each time.

In conclusion, the main contributions of this paper are:

– We proposed a new method to compare the variable length sequences using
the HMM parameter space.

– We showed that the number of largest eigenvalues (in absolute value) to span
subspace is one less than the number of clusters.

– We used the above result as a quality assessment criterion for cluster fit.

References

1. J. Alon, S. Sclaroff, G. Kollios V .Pavlovic, ”Discovering clusters in motion time-
series data”, Proceedings of Computer Vision and Pattern Recognition, 2003.

2. G.L. Scott and H. C. Longuet-Higgins, “Feature grouping by relocalisation of eigen-
vectors of the proxmity matrix” In Proc. British Machine Vision Conference, 103-
108, 1990.

3. G. Sleijpen and H. Van Der Vorst, “A Jacobi-Davidson iteration method for linear
eigenvalue problems”, SIAM J. Matrix Anal. Appl., vol. 17, 401425, 1996.

4. A. K. Jain , M. N. Murty , P. J. Flynn, “Data clustering: a review”, ACM Computing
Surveys (CSUR), 31(3), 264-323, 1999.

5. J. Shi and J. Malik. “Normalized cuts and image segmentation” In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 731-737, 1997.

6. L. Rabiner. “A tutorial on hidden markov models and selected applications in speech
recognition”, Proceedings of IEEE, 77(2), 257285, 1989.

7. R. B. Morgan, “Computing interior eigenvalues of large matrices” Linear Algebra
Appl., 154/156, 289-309, 1991.

8. P. Smyth, ”Clustering sequences with Hidden Markov Models”, Book: Advances in
Neural Information Processing Systems, The MIT Press, M.C. Mozer, M.I. Jordan,
T. Petsche, 648, 1997.

9. Y. Weiss, “Segmentation using eigenvectors: a unifying view”, Proceedings IEEE
International Conference on Computer Vision, 975-982, 1999.

(a)

(b)

1
2

3
4

5
6

7
8

0

2

4

6

8
0

0.5

1

Affinity Matrix

1 2 3 4 5 6 7
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Cluster number

V
al

id
ity

 s
co

re

(c) (d)

(e)

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

0.5

1

1 2 3 4 5 6 7
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

cluster number

va
lid

ity

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

cluster number

va
lid

ity

(f) (g) (h) (i)

Fig. 2. (a) Language discrimination set (upper) and the clustering results (lower). (b)
Pattern detection set (left) the computed clusters (right), and (c) affinity matrix, (d)
validity scores for this set. (e) Two random length, random distribution scenarios, (f-g)
affinity matrix and validity scores for the 1st column of (e), and (h-i) affinity matrix
and validity scores for the 3rd column of (e).

